Tan Choo Jun

spark

G. Spark, PySpark, Spark SQL and Jupyter Notebook home

  1. Spark is an in-memory distributed computing engine especially designed for the Hadoop cluster.
  2. Read more on Apache Spark at URLs https://spark.apache.org and https://en.wikipedia.org/wiki/Apache_Spark
  3. SparkApp.zip
  4. sparksql.zip

G1. Installation and Configuration home

  1. Login as hduser. Ensure that the SSH, DFS, and YARN services are started sequentially. Then, examine them using the jps command

  2. Download the correct version of Spark from the Apache Spark downloads page (http://spark.apache.org/downloads.html), and check the compatible with your installed Hadoop
    $ wget https://dlcdn.apache.org/spark/spark-3.5.3/spark-3.5.3-bin-hadoop3-scala2.13.tgz
    
  3. Uncompress the file
    $ tar -xvzf spark-3.5.3-bin-hadoop3-scala2.13.tgz
    
  4. Rename the Spark folder as spark
    $ mv spark-3.5.3-bin-hadoop3-scala2.13 spark
    
  5. Edit the file ~/.bashrc with the the following lines
    export SPARK_HOME=/home/hduser/spark
    export PATH=$SPARK_HOME/bin:$PATH
    
  6. Re-load the environment
    source ~/.bashrc
    
  7. Launch the PySpark interactive shell/interpreter
    pyspark
    

    To exit the pyspark shell with command exit()

  8. To minimize the verbosity of Spark , you need to configure the settings of log4j after duplicating the template file (optional).
    $ cp $SPARK_HOME/conf/log4j2.properties.template $SPARK_HOME/conf/log4j2.properties
    

    Edit the newly created log4j file, by replacing every occurrence of INFO with WARN, e.g. rootLogger.level = warn
    rootLogger.appenderRef.stdout.ref = console

G2. Using the PySpark Interactive Shell - Word Count home

  1. Launch PySpark’s interactive shell using user hduser
  2. Create an Resilient Distributed Dataset (RDD) with data from a text file. It transforms the RDD to implement the word count application using Spark.
    >>> text = sc.textFile("shakespeare.txt")
    >>> print(text)
    >>> from operator import add
    >>> def tokenize(text): return text.split()
    ...
    >>> words = text.flatMap(tokenize)
    
  3. It applies the map, and then it applies the reduceByKey action to obtain the word counts before saving the results in file
    >>> wc = words.map(lambda x: (x, 1))
    >>> print(wc.toDebugString())
    >>> counts = wc.reduceByKey(add)
    >>> counts.saveAsTextFile("hdfs://localhost:9000/user/hduser/wc")
    >>> exit()
    

    Apache spark version 3.3.6 does not need to have the hdfs directory path (hdfs://localhost:9000/user/hduser/) explicitly indicated to write in the local path, i.e., /home/hduser. Example: counts.saveAsTextFile(“wc”)

  4. Check the HDFS current working directory for the newly created directory’s contents, and use the head command to view one of the part files
    $ hdfs dfs -ls wc
    $ hdfs dfs -head wc/part-00000
    

G3. Using the PySpark Interactive Shell - Numerical home

  1. Install numpy using user hduser, and launch numpy with 4 cores
    $ pip3 install numpy
    $ pyspark --executor-cores 4
    
  2. Launch PySpark’s interactive shell and try the following codes. The codes generate a list of random integers and create an RDD by parallelizing num_list with library numpy.
    >>> import numpy as np
    >>> num_list = np.random.randint(0, 10, 20)
    >>> numbers_RDD = sc.parallelize(num_list)
    >>> numbers_RDD
    
  3. You may check the type for numbers_RDD, return all the elements of the RDD as an array, return an RDD created by consolidating all elements within each partition into a list
    >>> type(numbers_RDD)
    >>> numbers_RDD.collect()
    >>> numbers_RDD.glom().collect()
    
  4. You may extract various elements of the RDD and extract the unique values of the RDD
    >>> numbers_RDD.first()
    >>> numbers_RDD.take(3)
    >>> numbers_RDD.take(5)
    >>> numbers_RDD.take(8)
    >>> distinct_numbers_RDD = numbers_RDD.distinct()
    >>> distinct_numbers_RDD.collect()
    
  5. You may sum all the elements in numbers_RDD and sum all the elements in numbers_RDD using reduce
    >>> numbers_RDD.collect()
    >>> numbers_RDD.sum()
    >>> numbers_RDD.reduce(lambda x, y: x+y)
    
  6. You may find the max value in numbers_RDD and filter non-zero numbers that are divisible by 3
    >>> numbers_RDD.reduce(lambda x, y: x if x > y else y)
    >>> numbers_RDD.filter(lambda x:x%3==0 and x!=0).collect()
    
  7. Create a new RDD with the squares of all the elements in numbers_RDD
    >>> numbers_RDD.collect()
    >>> squares_RDD = numbers_RDD.map(lambda x:x*x)
    >>> squares_RDD.collect()
    
  8. Generate a histogram for the elements in squares_RDD and do mapping with a regular Python function
    >>> squares_RDD.histogram([x for x in range(0, 100, 10)])
    >>> def square_if_odd(x):
    ...     if x%2==1:
    ...             return x*x
    ...     else:
    ...             return x
    ...
    >>> numbers_RDD.map(square_if_odd).collect()
    
  9. Extract the even and odd numbers from numbers_RDD. What is the type of the collection that is returned? Sort the resulting numbers for the odd and even numbers
    >>> results = numbers_RDD.groupBy(lambda x:x%2).collect()
    >>> results
    >>> type(results)
    >>> sorted([(x, sorted(y)) for (x, y) in results])
    
  10. Prform the union(), intersection(), subtract(), cartesian()
    >>> squares_RDD.collect()
    >>> numbers_RDD.collect()
    >>> union_RDD = sc.union([numbers_RDD, squares_RDD])
    >>> union_RDD.collect()
    
  11. cartesian() generates a Cartesian product of two collections and returns all the possible combinations of pairs between the elements in both collections
    >>> numbers_RDD.cartesian(numbers_RDD).collect()
    

G4. Using the PySpark Interactive Shell - Text Processing home

  1. Find the longest word in a sentence
    >>> words = 'It is not that I am so smart but I stay with the questions much longer Albert Einstein'.split()
    >>> print(words)
    >>> words_RDD = sc.parallelize(words)
    >>> words_RDD.reduce(lambda w, v: w if len(w) > len(v) else v)
    

    or

    >>> def findLongestWord(x, y):
    ...     if len(x) > len(y):
    ...             return x
    ...     else:
    ...             return y
    ...
    >>> words_RDD.reduce(findLongestWord)
    
  2. Find the lexicographically largest word in a sentence
    >>> def findLargestWord(x, y):
    ...     if x > y:
    ...             return x
    ...     else:
    ...             return y
    ...
    >>> words_RDD.reduce(findLargestWord)
    
  3. Find the lexicographically smallest word in a sentence using lambda expression
    >>> words_RDD.reduce(lambda w, v: w if w < v else v)
    
  4. Count the number of lines in a text file with certain letters. Note the cache() function pulls data sets into a cluster-wide in-memory cache, which is very useful when data is accessed repeatedly
    >>> logFile = "file:///home/hduser/shakespeare.txt"
    >>> logData = sc.textFile(logFile).cache()
    >>> number_of_w = logData.filter(lambda s:'w' in s).count()
    >>> number_of_c = logData.filter(lambda s:'c' in s).count()
    >>> print("Lines with 'c':{}, lines with 'w':{}".format(number_of_c, number_of_w))
    

G5. Using the PySpark Interactive Shell - Word Count (SparkApp) home

  1. Make a copy of the C:\de\SparkApp folder in the local hduser’s home directory
    $ sudo cp -r /mnt/c/de/SparkApp /home/hduser
    $ sudo chown -r hduser:hduser /home/hduser/SparkApp
    
  2. Change directory to the SparkApp folder, and review the code in wordcount.py
    $ cd /home/hduser/SparkApp
    $ cat wordcount.py | more
    
  3. Submit the wordcount.py job to Spark (directly to the YARN resource manager)
    $ spark-submit wordcount.py shakespeare.txt hdfs://localhost:9000/user/hduser/spark_wc
    

    May always re-submit the same job by using different directory name, e.g. give a new name instead of spark_wc

  4. You may check the results directory in the HDFS system and view the beginning portion of the output file part-00000
    $ hdfs dfs -ls spark_wc
    $ hdfs dfs -head spark_wc/part-00000 
    

G6. Using the PySpark Interactive Shell - Flight Delay (SparkApp) home

  1. Change directory to the SparkApp folder, and review the code in app.py
    $ cd /home/hduser/SparkApp
    $ cat app.py | more
    
  2. Copy the folder with the data files to the distributed file system, and make a copy of the source file
    $ hdfs dfs -put SparkApp/ontime
    $ sudo cp app.py app2.py
    
  3. Modify the file path in app.py, which has the codes of loading the airlines lookup dictionary and reading the CSV data into an RDD, as follows
    airlines = dict(sc.textFile("file:///home/hduser/SparkApp/ontime/airlines.csv").map(split).collect())
    flights = sc.textFile("file:///home/hduser/SparkApp/ontime/flights.csv").map(split).map(parse)
    

    to

    airlines = dict(sc.textFile("ontime/airlines.csv").map(split).collect())
    flights = sc.textFile("ontime/flights.csv").map(split).map(parse)
    
  4. Submit the wordcount.py job to Spark (directly to the YARN resource manager)
    $ spark-submit app.py
    
  5. You may check the results directory in the HDFS

G7. Spark SQL home

  1. Spark SQL is a module in Apache Spark that provides a relational interface to work with structured data using SQL-based operations in Spark through either JDBC/ODBC connectors, a built-in interactive Hive console, or Spark SQL API. This practical covers the Spark SQL API, which runs as a library on top of Spark’s Core engine and APIs. The Spark SQL API may be accessed using the same programming interface that was used for Spark’s RDD APIs
    sparksql
  2. Read more on Apache Spark at URLs https://spark.apache.org/sql/ and https://en.wikipedia.org/wiki/Apache_Spark#Spark_SQL

  3. Login as hduser, and install the Jupyter notebook, pandas, and reverse geocoder (https://pypi.org/project/reverse_geocoder/) packages
    $ sudo apt install jupyter-notebook
    $ pip3 install pandas
    $ pip3 install reverse_geocoder
    
  4. Make a copy of the C:\de\sparksql folder in the local hduser’s home directory
    $ sudo cp -r /mnt/c/de/sparksql /home/hduser
    $ sudo chown -r hduser:hduser -R /home/hduser/sparksql
    
  5. Change directory to the sparksql folder, and review the code in wordcount.py
    $ cd ~/sparksql/data
    $ hdfs dfs -mkdir data
    $ hdfs dfs -put sf_parking_clean.json /user/hduser/data/
    
  6. Launch the PySpark interactive shell/interpreter, and try the following codes
    >>> from pyspark.sql import SQLContext
    >>> sqlContext = SparkSession.builder.getOrCreate()
    >>> parking = sqlContext.read.json("hdfs://localhost:9000/user/hduser/data/sf_parking_clean.json")
    >>> parking.printSchema()
    >>> parking.first()
    >>> parking.createOrReplaceTempView("parking")
    >>> parking.show()
    >>> aggr_by_type = sqlContext.sql("SELECT primetype, secondtype, count(1) AS count, round(avg(regcap), 0) AS avg_spaces FROM parking GROUP BY primetype, secondtype HAVING trim(primetype) !='' ORDER BY count DESC")
    
    >>> aggr_by_type.show()
    >>> parking.describe("regcap", "valetcap", "mccap").show()
    >>> parking.stat.crosstab("owner", "primetype").show()
    >>> parking = parking.withColumnRenamed('regcap', 'regcap_old')
    >>> parking = parking.withColumn('regcap', parking['regcap_old'].cast('int'))
    >>> parking = parking.drop('regcap_old')
    >>> parking.printSchema()
    
    >>> def convert_column(df, col, new_type):
    ...     old_col = '%s_old' % col
    ...     df = df.withColumnRenamed(col, old_col)
    ...     df = df.withColumn(col, df[old_col].cast(new_type))
    ...     df = df.drop(old_col)
    ...     return df
    ...
    >>> parking = convert_column(parking, 'valetcap', 'int')
    >>> parking = convert_column(parking, 'mccap', 'int')
    >>> parking.printSchema()  
    
    >>> import reverse_geocoder as rg
    >>> def to_city(location):
    ...	name = 'N/A'
    ...	r = rg.search((location.latitude, location.longitude))
    ...	if r != None:
    ...		name = r[0]['name']
    ...	return name  
    >>> from pyspark.sql.functions import udf
    >>> from pyspark.sql.types import StringType
    >>> location_to_city=udf(to_city, StringType())
    >>> sfmta_parking = parking.filter(parking.owner == 'SFMTA') \
    ...	.select("location_1", "primetype", "landusetyp", "garorlot", "regcap", "valetcap", "mccap") \
    ...	.withColumn("location_1", location_to_city("location_1")) \
    ...	.sort("regcap", ascending=False)
    >>> sfmta_parking.show()
    >>> sfmta_pandas = sfmta_parking.filter(sfmta_parking.location_1 != 'N/A').toPandas()
    >>> sfmta_pandas.groupby(['location_1'])['regcap'].mean().nlargest(20)
    

    Suppose that your installed Spark does not need to have the hdfs directory path (hdfs://localhost:9000/user/hduser/) explicitly indicated. E.g., it may be run as: parking = sqlContext.read.json(“data/sf_parking_clean.json”)

G8. Spark SQL and Jupyter Notebook home

  1. Apache Arrow is a development platform for in-memory analytics. It contains a set of technologies that enable big data systems to store, process and move data fast. Pyarrow has integred with NumPy, pandas, and built-in Python objects. They are based on the C++ implementation of Arrow (https://arrow.apache.org/).

  2. Read more from URL https://arrow.apache.org/docs/python/index.html

  3. Login as hduser, and install the Jupyter notebook, PySpark and PyArrow packages
    $ pip3 --version
    $ sudo pip3 install --upgrade pip
    $ cd ~
    $ pip3 install jupyter
    $ pip3 install jupyter-server
    $ pip3 install pyspark
    $ pip3 install pyarrow
    
  4. Edit the file .bashrc by adding an alias to launch Jupyter
    alias jupyter-notebook="~/.local/bin/jupyter-notebook --no-browser"
    
  5. Update your bash profile
    $ source ~/.bashrc
    
  6. Make a copy of the C:\de\sparksql folder in the local hduser’s home directory (optional)
    $ sudo cp -r /mnt/c/de/sparksql /home/hduser
    $ sudo chown -r hduser:hduser -R /home/hduser/sparksql
    
  7. To start the Jupyter notebook server by issuing the following command. Then, copy and paste one of the URLs that are listed in any web browser
    $ cd ~/sparksql
    $ jupyter notebook --port=8888 --no-browser
    

    Suppose that you have error: No module named ‘jupyter_server.contents’, try to switch the traitlets

    $ pip3 uninstall traitlets
    $ pip3 install traitlets==5.9.0
    

    To terminate the Jupyter notebook server with Ctrl-C

  8. Open up the Practical3c_SparkSQL_and_DataFrames.ipynb notebook and do the Spark SQL exercises there.

    Suppose that you have learned some essential codes in G4 to G7 before attempting the G8

G9. JupyterLab home

  1. JupyterLab is a highly extensible, feature-rich notebook authoring application and editing environment, and is a part of Project Jupyter, a large umbrella project centered around the goal of providing tools (and standards) for interactive computing with computational notebooks. It is a sibling to other notebook authoring applications under the Project Jupyter umbrella, like Jupyter Notebook and Jupyter Desktop. JupyterLab offers a more advanced, feature rich, customizable experience compared to Jupyter Notebook.

  2. Read more from URL https://jupyterlab.readthedocs.io/en/latest/

  3. Login as hduser, and install the JupyterLab
    $ pip3 --version
    $ sudo pip3 install --upgrade pip
    $ sudo pip3 install jupyterlab
    $ sudo apt install python3-venv
    
  4. Login as student to start the Jupyter server by issuing the following command. Then, copy and paste one of the URLs that are listed in any web browser. You should able to observe the create myenv1 in your web browser.
    $ cd ~
    $ python -m venv myenv1
    $ jupyter-lab